Chapter 1: Coordinates and Designs

Cartesian Plane

- A plane containing two perpendicular axes: x (the **horizontal axis**) and y (the **vertical axis**) which intersect at a point called the **origin** (0,0).
- It is also called a coordinate plane.
- Each dot on the graph, called an **ordered pair**, uses an x and a y coordinate.

Coordinate Plane

• Same as Cartesian Plane

Horizontal

• A line that is drawn that goes left to right (parallel to the horizon).

X-axis (Horizontal Axis)

- The line on a graph that runs left to right (side to side) through zero.
- It is used as a reference line so you can measure from it.

Vertical

• A line that is drawn that goes up and down.

Y-axis (Vertical Axis)

- The line on a graph that runs vertically (up-down) through zero.
- It is used as a reference line so you can measure from it.

Axes

• Plural form of axis.

Origin

- The point on a Cartesian plane where the x-axis and the y-axis cross.
- It is labeled (0, 0).

Ordered Pair

- A pair of numbers used to locate a point on the coordinate plane.
- The 1st number is the horizontal movement on the x-axis, and the 2nd number is the vertical movement on the y-axis.

Coordinates

- The values in an ordered pair (x, y).
- The 1st coordinate always refers to the X-axis.
- The 2nd coordinate always refers to the Y axis.

Roman Numerals

• I, II, III, IV are Roman numerals that represent 1, 2, 3 and 4.

Quadrants

• The four regions on the coordinate grid.

Vertex

• The point where two sides of a figure meet up.

Vertices

• The plural form of vertex.

Transformation

- Moves a geometric figure. The shape still has the same size, area, angles and line lengths.
- It can move as a:
 - 1. slide (translation)
 - 2. flip (reflection)
 - 3. turn (rotation)

Translation

- A slide along a straight line. It can go up/down and left/right.
- Each point of the shape must move the same:
 - 1. Direction
 - 2. Distance
- After you have redrawn the object, remember to rename each vertex using "prime".
- It moves the shape without rotating, resizing or anything else!

Reflection

- An image or shape as it would be seen in a mirror.
- The mirror line is called the line of reflection.

Vertical Line of Reflection

• The mirror line goes in an up-down direction.

Horizontal Line of Reflection

• The mirror line goes in a side-to-side direction.

Clockwise

Moving in the direction of the hands on a clock.

Counterclockwise

• Moving in the opposite direction from the hands on a clock.

Rotation

- A turn about a fixed point (called the **centre of rotation**).
- The **angle of rotation** is measured in degrees.
- A full rotation is 360 degrees. This would bring the object back to its starting position!
- Hint: You can use a piece of tracing paper to help you rotate the figure.

Centre of Rotation

• The point around which an object is rotated.

Angle of Rotation

- The number of degrees that something is rotated about a fixed point.
- This example shows an angle of rotation of 90 degrees in a **clockwise** direction about the **origin** (0, 0).

Reading Prime

• A' is read *A prime*. It is used to label the point that matches point A after it has been transformed (moved). Remember, a figure can slide, reflect or turn!

Reading Double Prime

• A" is read A double prime. It is used to label the point that matches point A after it has been transformed (moved) two times.

Reading the Translation Arrow

• The translation arrow \rightarrow shows the distance and direction a figure has moved.